163

Driving Load Estimation with the Use of an Estimated

Turbine Torque*

Deok-Ho KIM**, Keum-Shik HONG*** and Kyongsu YI****

In this paper, a vehicle driving load estimation scheme in the form of a linear state ob-
server is presented. The signals used in the observer are the transmission output speed and
driven wheel speed, which are readily available in any vehicle equipped with an automatic
transmission. Because the observer requires the turbine torque as input, the turbine torque
itself has been estimated using a neural network. The proposed observer has been evaluated
using a vehicle simulator in various driving situations considering transmission oil temper-
ature variations, engine power losses, and variation of load conditions. A nonlinear vehicle
powertrain model has been used in the development of the vehicle simulator. The effective-
ness of the proposed scheme has been tested through experiments.
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1. Introduction

Recently, various advanced vehicle control systems
such as longitudinal control, access control, climate con-
trol, and others are being developed in the automobile
industry. The most notable one among them is vehicle
longitudinal control. Two difficulties in realizing a robust
longitudinal control”~®_ which provides both improved
safety and driving comfort, are seen from two aspects: The
vehicle dynamics is highly nonlinear and a number of core
signals are not easily obtained. ;

In the longitudinal motion control, the ignorance of
the driving resistance load (driving load in short) is known
to be the most influential factor limiting its control per-
formance. The importance of knowing the driving load
has been recognized in many related works: an intelli-
gent cruise control system"-3»® 4 collision warning and
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avoidance system™, a longitudinal vehicle platoon con-
trol®, and a powertrain control system® -9, and others.

The driving load of a vehicle in motion is defined as
the sum of the rolling resistance, aerodynamic drags, and
road grade resistance!!V, in which the road grade resis-
tance is known to be the most dominant one'?. Most pre-
vious works in the literature have treated the driving load
as an external disturbance():(©.(10).(13).(14) ' Therefore, the
performance of a longitudinal motion control depended
heavily on how well the robustness of the designed con-
troller has been assured over the driving load.

Measuring the driving load is not impossible but
is costly. Particularly, adding additional sensors works
against the trend of lowering the total cost of a mass pro-
duction car. Hence, if the deriving load can be estimated
somehow rather than measuring it, would be a good al-
ternative in improving the longitudinal motion control.
Ohnishi et al."" proposed an estimation method of the
road slope using a simple kinetic method for the purpose
of avoiding shift changes in up-hills or down-hills. Kim et
al.'>) proposed an observer-based driving load estimation
algorithm that can be implemented with inexpensive RPM
sensors that are already being used. In the work of Ohnishi
et al.'D, the road slope is estimated using the equation of
motion that involves the mass of the vehicle, where they
assumed the mass being constant. However, the mass nor-
mally changes depending on the number of passengers and
load. On the other hand, in the feedback observer method
using speed sensors, the mass change does not effect the
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speed change directly. Therefore, the advantage of us-
ing an observer scheme is that the mass change can be
allowed and moreover the effects of sensor noises, distur-
bances acting on the vehicle, and model uncertainties can
be reduced by feedback signals.

In this paper, a new driving load estimation of turbine
torque using neural networks has been incorporated in
the observer-based estimation algorithm to achieve a bet-
ter performance over variations in the automotive power
transmissions process. The performance of the developed
estimation algorithm has been evaluated using a nonlinear
full vehicle simulation model in two different cases; in the
presence of modeling error and under the uncertain load
environment. The proposed method can be utilized for the
development of an advanced longitudinal control system.

The contributions of this paper are: A driving load es-
timation method in the form of an observer design is firstly
proposed. Secondly, the proposed observer is combined
with a turbine torque estimation scheme using neural net-
works. Therefore, the robustness of the algorithm upon
variations of the vehicle speed, oil temperature, throttle
angle, etc. has been greatly improved.

The paper is structured as follows: In section 2, the
dynamic models for powertrain components are described.
In section 3, the observer design for the driving resistance
load estimation is introduced. In section 4, in order to
estimate the unknown input, i.e. the turbine torque in the
proposed observer design, a new torque estimation tech-
nique using neural networks is described. In section 5,
the performance of the proposed estimation algorithm is
simulated via a nonlinear full vehicle model. In section 6,
experimental results in the dynamometer are given. Con-
clusions are given in section 7.

2. Vehicle Powertrain Model

Figure 1 is a schematic of the vehicle powertrain sys-
tem depicting driving resistances. The powertrain system
consists of an engine, a torque converter, an automatic
transmission, a driveline, and the driving resistances in-
clude wind drags, road slope, and rolling resistance. The
powertrain system delivers the engine torque to the driv-
ing wheels through a serious of components in the system,
in which the automatic transmission changes gear ratios

Fig. 1 The considered vehicle powertrain system with driving
resistances
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upon various torque loads by engaging and disengaging
the hydraulically driven clutches. Even though the model-
ing of powertrain components is not the issue in this paper,
but for the completeness of this paper, a number of mathe-
matical models needed are briefly outlined in this section.
2.1 Engine

The engine is a complex and highly nonlinear sub-
system. The following equation representing the engine
dynamics is adopted:

Lew, =T (we,@)—=T), 1

where I, denotes the engine inertia (kg m?), w, is the en-
gine speed (rpm), « is the throttle angle (%), T, is the
torque converter pump torque (Nm), and T, is the engine
torque that is a nonlinear function of w, and a.
2.2 Torque converter

The torque converter consists of a pump (input), a tur-
bine (output), and a stator (reaction member). The pump is
directly connected to the engine and therefore turns at the
same speed of engine. Torque is transmitted to the turbine
through the oil flow induced by the pump. The steady-
state pump torque T, and turbine torque T, of a typical
torque converter are given as follows:

Tp = Cplwe, w2, @
Ty =THwe,w)T), (3)

where C,, is the capacity factor and T, is the torque ratio.
C, and 7, are nonlinear functions of the ratio of engine
and turbine rotational speeds, respectively, which are nor-
mally provided by the manufacturer as a look-up table.
2.3 Automatic transmission

An automatic transmission consists of several plane-
tary gears and associated clutches and bands. In this pa-
per, a two-state transmission model (i.e., w, and w,,) is
adopted!6» (17, .

The state equation in first gear is given by

Inw,=T,—R\R4Ts, )

R2

where [, = I,+IS,~+RfIC,+ R—;Ici, w; is the turbine speed, R,

2
is the first gear speed reduction ratio, R, is the second gear

speed reduction ratio, R, is the final drive speed reduction
ratio, T, is the axle torque (both sides combined), /; is
the converter turbine and chain inertia, /,; is the input sun
inertia, I, is the reaction carrier inertia, and /; is the input
carrier inertia. ,

When the vehicle reaches a shift speed, a hydraulic
control circuit applies the second clutch. This initiates
the starting of 1 —2 upshift. The state equation during the
torque phase is modeled as

R
Lo = T,—RIRde—(l + R—Z)Tcz, (5)
1

where T, is the torque on the second clutch, i.e., oncom-
ing clutch. During the inertia phase, the state equations
for the converter turbine and the carrier become
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L, =T, ~Te, (6)
T,
IerpWer = R_CZ —R4Ts, @)
2
Li | L

where I, =1, + Rf + R—%

When the slip speed of the second clutch (Aw.»)
reaches zero, the second clutch locks up. Hence, the state
equation in second gear is modeled as

lInw; =T —RyR,T, ®

2

where Ip =1, +1; + R3 1, + R—glsi.

2.4 Clutch torque modlel
The clutch torque T, is given as a static function of
the clutch hydraulic pressure, clutch geometry, plate fric-
tion characteristics, and the clutch slip speed. For calcu-
lating the clutch torque, the following equation is used:

Toa=Ax+0-Py-sgn(Awy), ()

where A, denotes the total clutch area of the gear times
the effective radius; 6 =8 + 64|Aw,i|, where 6,,6;,>0, P

is the hydraulic pressure applied to the clutch, and Aw,; =
cr

’ll%e pressures of clutches and brakes are controlled by
electromagnetic valves. Since the dynamics of hydraulic
parts is nonlinear and high-order, it is not easy to model
the dynamics in detail for the analysis of shift transients.
Thus, a model based on the steady-state characteristics of
the hydraulic parts from a look-up table is widely used for
a shift control.

2.5 Driveline model

The angular velocity of the final drive output shaft is
the input to the axle shaft. The axle shaft is modeled as a
torsional spring as

Ty = Ki(Rywer — wy), (10)
where T; is the shaft torque of the output axle; K is the

torsional stiffness and w,, is the wheel speed. The rota-
tional dynamics of the driving wheel is given by

lywy,=Ts~Ty, (11)

Wy

where I, is the equivalent vehicle inertia and T is the
driving load.

The driving load is modeled as the sum of the rolling
resistance, aerodynamic drags, and road grade resistance
as follows:

T =r{(CoV? + Mgsinf +u,Mg), (12)

where r; is the tire radius, C, is the aerodynamic drag co-
efficient, V is the vehicle speed, M is the mass of the vehi-
cle, g is the gravitational acceleration, @ is the road grade
in degree, and g, is the rolling resistance coeflicient.
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Fig. 2 Estimation scheme of the driving load

3. Observer Design

Figure 2 shows an estimation scheme of the driving
load, T, in the form of an observer design. The estimation
algorithm can be divided into two parts: linear observer
design with rpm measurements and unknown input torque
estimation (w,, and w,, for linear observer and w, and T,;
for torque estimation, see Fig. 2). The speed signals, after
reducing noises with the use of Kalman filter, are supplied
to the turbine torque estimator as an input and the driving
load observer as a measured signal. For a driving load ob-
server design, the models in section 2 are utilized. These
models have been used in the areas of vehicle longitudinal
control'® and observer design!®> 9 and are sufficient to
capture the dynamics of a given powertrain system.

First, the following assumptions are made: 1) the
road surface condition is the same throughout all tires.
2) The no-slip assumption has been incorporated, because
the wheel slip is quite small at a low level of acceleration.
3) The brake torque is neglected during a throttle opera-
tion.

Now, the differential equation for the transmission
carrier speed is

. 1 (T
er =7 (E —Rde) (13)

where I,; is the carrier inertia at the i-th gear ratio, and
R; and Ry are the i-th gear ratio and the final drive gear
ratio, respectively. The equation of motion for the wheel
is written as follows:

) 1

Wy =7 (Ts=Tp). (14
The equation for the axle shaft torque dynamics is

Ts = K (Rywer — wy). (15)

Note that in (14), the driving load T is unknown and in-
accessible. Hence, for estimating it, the driving load is
considered as a 4-th state variable, and estimated in the
form of an observer.

Since the variation of the vehicle driving load,
T, is slow compared to the observer dynamics, the
O-observer®" is used in order to simplify the observer de-
sign, assuming that

T.=0. (16)

Now,’ gathering all equations, the model for an observer
design is summarized as follows:
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. 1 (T
Wer = Ic_”' (R_t _Rde)»

Wy = _(Ts_TL)’
I,

T, = Ki(Rawer = wo),
T, =0,
where the state vector is defined as follows:
x=[we 0o Ts To] . a7

Let the input be u =T, (the turbine torque). Let the trans-
mission output speed and driven wheel speed be measured

T
outputs, i.e., y = [ Wer Wy ] . Then, the state-space model
for an observer design is set as follows:

x=Ax+Bu, u=T, (18)
y=Cx+n,
where
0 0 —f‘f 0 1
lcr,z 1 Icr,iRi
A=| O 0 — —, B=| 0 |,
I, I, 0
KsR; -Ks O 0 0
0 0 0 0
(1000
¢= 0100

Note that w,., and w,, are easily measurable using inexpen-
sive rpm sensors currently in use on the vehicles equipped
with an anti-skid braking system.

The following observer can be used for the estimation
of the driving load:

X=A%+Bi+L[y-C3], 19)
y=Cx+n,

where 7 is the estimated input. However, another problem
left is that the input to the observer, the turbine torque 77,
is not known yet and is inaccessible either. So, the turbine
torque estimation is now discussed in the next section.

4. Turbine Torque Estimation

The turbine torque is an unknown input to the ob-
server proposed. The accuracy in estimating the driving
load depends absolutely on the performance of estimating
the unknown torque.

4.1 Regression fitting method

In general, the turbine torque model using two nonlin-
ear characteristic functions of the torque converter, which
is provided by the manufacturer as a look-up table, has
been widely used in vehicle control areas. The turbine
torque, which is an unknown input to the observer, has
been estimated using two nonlinear characteristic func-
tions of the torque converter, as shown in Fig. 3. In this
paper, the turbine torque model has been obtained from a
regression fit of experimental data, given in (20).
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Fig.3 Turbine torque estimation using two nonlinear charac-
teristic functions of the torque converter

T,=Cy(Nw?, (20)
T,=T,(NTp,

wt
where r= —

T.(n= {

p(r)zl

4.2 Neural network modeling

The input torque to an automatic transmission, which
is generated from the engine, is delivered and amplified
by a torque converter. In particular, the turbine torque is
transferred to the automatic transmission as a result of the
oil-induced flow in the torque converter, and oil proper-
ties vary upon the variation of oil temperature. However,
there are several uncertainties in the input torque from en-
gine to automatic transmission. For example, the torque
converter characteristics depend on the temperature of in-
ternally induced oil. Figure 4 shows the effect of oil telm—
perature on the turbine torque. Results from experiments
indicate that the torque loss caused by the drag torque in
the torque converter due to variations of oil temperature,
from 30°C to 80°C, is quite significant. Eight to twenty-
five percent variations of the turbine torque has been ob-
served for the above oil temperature variation. Hence, the
torque converter characteristics is considerably affected by
the temperature of internally induced oil and a more accu-
rate estimation of the turbine torque can be obtained by
considering the oil temperature variation.

The magnitude of this torque is mainly determined
by a throttle operation and the torque converter character-
istics. The loss in torque production due to the variation
in oil temperature should be considered in vehicle control
applications. In this paper, a new modeling approach us-
ing neural networks has been introduced, so that a more
accurate turbine torque compensation can be obtained.
The structure of the Feedforward Neural Network (FNN)
model used for a turbine torque estimation is shown in
Fig. 5. The input pattern of the FNN model is composed
of engine speed, turbine speed, and oil temperature in the
torque converter. The output of the model is the driving

-1. 412r+2 2 r<0.85
r>0.85

3% (~1.695r* +0.294 6r + 1.874).
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torque part of the turbine torque given in (21).
T,= Ttan‘ue + Ttllass 21

where T;|p,;,. is the actual driving torque part in the torque
converter and T;;,s is the drag loss in the torque con-
verter depending on oil temperature.

In this paper, the used activation function in the hid-
den layers in Fig.5 is a hyper-tangent sigmoid function
and that in the output layer is a pure linear sigmoid func-
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Fig. 4 Variations in turbine torque affected by torque converter
oil temperature according to various driving torques
from a torque-controlled AC motor

1st Hidden 2nd Hidden
Layer Layer

Input
Layer

Output
Layer

Fig. 5 Neural network architecture for a turbine torque
estimation
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tion®. The number of neurons in the first and second
hidden layers are eight and two, respectively. The used
learning algorithm is the Gauss-Newton method. The in-
put and output variables are normalized to the values be-
tween —1 and 1 by subtracting their averages. For learn-
ing, total 72 data set were used. The mean squares error of
a well-trained neural network model was 0.269 2, which
represents a relative error of 3.54%.

By introducing oil temperature as another variable
representing better torque converter characteristics, the
torque variation due to the change in oil properties can
be compensated. Even when torque converter character-
istics change or the performance of the engine degrades,
accurate torque information can be obtained using three
measured variables.

5. Simulation Studies

Simulations were conducted to evaluate the perfor-
mance of the proposed estimation algorithm for the driv-
ing load in several cases. Longitudinal dynamics of a ve-
hicle are considered and the powertrain model used in this
study includes relevant dynamic characteristics of the en-
gine/transmission, and the driveline of the vehicle. The
parameter values used are given in Table 1.

As shown in Fig. 6, many factors affect the magni-
tude of the driving load; for example, the vehicle speed,
road grade, road condition, etc. Based on the analysis of
the driving load resistance, simulation conditions to eval-

Table 1 Parameter values used in the vehicle model
 Specification | Variable | Value | Unit
Mass of the Vehicle M 1,250 Kg

Mass Moment of 2
Inertia of the Vehicle Z 107 Kgm
Shaft Stiffness K, 6,742 Nm
Aerodynamic Drag
Coefficient C, 02367 | Kg/m
Tire Radius r, 0.287 m

T T T T T

Grade Resistance E
~~~~~~~~~~~~~ - Air Drag Force
---------- Friction Force

Resistive Force [%]
8

20 40 60 80 100 120
Velocity [km/h]

Fig. 6 Relative magnitudes of the driving resistive forces in
terms of vehicle speed
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Fig. 7 Estimation performance under torque variations of
power transmission: at 30% constant throttle operation

uate the performance of the proposed method are mainly
divided into two parts; in the presence of a modeling error
and in an uncertain environment of the running vehicle.
5.1 In the presence of a modeling error

Case 1: Variation in torque estimation

Figure 7 shows the simulation results for 10% and
20% torque losses. It shows that the torque losses caused
by viscous drag torque in the torque converter and de-
graded performance of the engine can result in a large es-
timation error of the driving load. As illustrated in Fig. 4,
the toque losses heavily depend on torque converter char-
acteristic. The incorporation of the torque estimation tech-
nique using FNN model into the observer-based estima-
tion algorithm of the driving load will reduce this estima-
tion error caused due to torque losses.

Case 2: Parametric uncertainties

Nonlinearities and uncertainties in the parameters are
involved in the vehicle system. So, the estimation method
applied to vehicle control systems should be robust against
those uncertainties. We perform simulations to evaluate
the observer’s ability to handle uncertainties, such as axle
shaft stiffness. Figure 8 shows the estimation performance
on running on a road slope under 30% uncertainty of axle
shaft stiffness and the dynamic estimate of the observer is
accurate even during transients.

5.2 Inan uncertain environment

Case 1: Running on a road slope

As shown in Fig. 6, it is noted that grade resistance
force dominates because an abrupt change in road slope
contributes to a large variation of the driving load rather
than the vehicle speed which is a slowly varying factor.

In Fig.9, an uphill driving simulation test has been
performed to evaluate the estimation capability on chang-
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Fig. 10 Estimation performance on a varying road grade

ing course conditions. The driving load changes signif-
icantly with a step change in the road grade. Figure 10
shows that the proposed estimation scheme can provide
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Table 2 Coefficients of rolling resistance

g ‘ Surface
Tire type , Medium
St Concrete Hard Soil Sand
Passenger Car 0.015 0.08 0.3
Truck 0.01 0.06 0.25
Tractor 0.02 0.04 0.2
60 77171 71
1200 = — Actual . sand
5 oo Estimated 3
Z 800 . 1
§ 400 medium hard N
-l .
0 —
! ] ! | 1 | 1 |
0 10 20 30 40
E
£
£
i
Time [sec]
Fig. 11 Estimation performance under changes in road

conditions

quite an accurate estimate even during abrupt changes in
the road grade.

Case 2: Changes in road condition

The driving load varies widely with different road
conditions: for example, concrete, medium hard, and
sand. Coefficients of rolling resistance corresponding
to different road conditions are shown in Table 2%
Figure 11 shows the estimation performance for abrupt
changes in rolling resistance of a passenger car. The sim-
ulation results indicate that the driving load changes sig-
nificantly with a change in the coefficient of rolling re-
sistance due to different road conditions, and the observer
shows good performance in accurately estimating the driv-
ing load for widely varying road conditions.

6. Experimental Studies

Experimental studies have been conducted to exam-
ine the proposed estimation method. Figure 12 shows a
schematic diagram of the experimental setup. A photo of
the experimental test setup is shown in Fig. 13. A torque-
controlled AC motor was used as an engine. An inertia
load was used for the external driving load. The test setup
includes all the sensors for measuring important variables
in the powertrain system. The sensors for measuring an-
gular speeds of the engine, turbine, and transmission out-
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Fig. 12 Schematic diagram of the experimental test setup

Fig. 13 The experimental test setup

put speed as well as a transmission fluid temperature sen-
sor are equipped. A torque transducer has been installed
in the transmission output shaft to measure the transmis-
sion output shaft torque, which is used for evaluating the
performance of the turbine torque estimation by using the
proposed estimation algorithm. The final implementation
took the form of a look-up table, which was pre-evaluated
with various conditions using a trained neural network
model. The interpolation method was used in obtaining
output values from given input values. The measurement
of the engine speed, turbine speed, and oil temperature
were done in every 10 msec.

Figure 14 shows experimental results of turbine
torque estimation. In the case that the modeling error in
torque is caused by the variation in torque converter char-
acteristics, the estimation method using two static nonlin-
ear curves may not be adequate and the estimation error
is quite large at some operating conditions. The proposed
estimation method shows a better agreement with experi-
mental results compared with conventional method using
static torque converter characteristics. Then, it has been
incorporated in the driving load estimation algorithm us-
ing an observer for achieving better performance.

Figure 15 shows the estimation performance using the
proposed algorithm when a step load torque is applied.
Experiments were performed for uncertain changes in the
driving load torque, which should cause degraded perfor-
mance in vehicle control systems. The test condition is

Series C, Vol. 49, No. 1, 2006
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(a) Experimental results
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(b) Estimation error [%] of the turbine torque

Fig. 14 Comparison of turbine torque estimations between the
FNN model and the conventional model using static
characteristic curve at 71-77°C
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Fig. 15 Experimental result of driving load torque estimation

Table 3 Experimental test conditions

™ et GRER e AN
ATF temperature 705 C
Line pressure 6.5+0.5 bar
Sampling frequency 100 Hz
Filtering 3-pole LPF, 10Hz cutoff

also shown in Table 3. The sampling time for the mea-
surement and estimation is 10ms. The oil temperature
is around the nominal condition (about 70°C). As can be
seen, it is noted that unexpected variations in driving load
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Fig. 16 Experimental result of driving load torque estimation
N

can be monitored by using the proposed driving load esti-
mation method.

7. Conclusions

In this paper, an estimation scheme of the driving load
in the form of an observer has been investigated. The de-
veloped scheme uses inexpensive rpm sensors currently
being used in production vehicles. A new scheme for the
estimation of the turbine torque, which is the input to the
observer, has also been discussed. The effectiveness of
the proposed method was demonstrated through the use of
a full vehicle simulation model in various scenarios and
vehicle dynamometer tests. The proposed estimation al-
gorithm has good performance both over modeling error
and in the uncertain environment. The estimated driving
load can be effectively used in advanced longitudinal con-
trol systems such as an intelligent cruise control control, a
CW/CA system, and a vehicle platoon control system.
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